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Abstract. In content-based image retrieval we are faced with continu-
ously growing image databases that require efficient and effective search
strategies. In this context, shapes play a particularly important role, es-
pecially as soon as not only the overall appearance of images is of interest,
but if actually their content is to be analysed, or even to be recognised.
In this paper we argue in favour of numeric features which characterise
shapes by single numeric values. Therewith, they allow compact repre-
sentations and efficient comparison algorithms. That is, pairs of shapes
can be compared with constant time complexity. We introduce three nu-
meric features which are based on a qualitative relational system. The
evaluation with an established benchmark data set shows that the new
features keep up with other features pertaining to the same complexity
class. Furthermore, the new features are well-suited in order to supple-
ment existent methods.

1 Introduction

Content-based retrieval from large image databases is a challenging problem in
computer vision. Its importance grows continuously with the increasing penetra-
tion of image databases in many areas of everyday life. As an example, think of
Flickr!, which is an internet platform for uploading and sharing of photographic
content. Large amounts of image data can also be found in the economic as well
as the scientific area. The pure amount of content, and even more its fast growth,
illustrates the demand for efficient and effective search strategies. Therefore, it
is particularly desirable to choose features with only little computational com-
plexity for the comparison of images. In image retrieval, this has already been
applied for a long time to colour and texture. As an example, think of colour his-
tograms having a fixed number of entries. Consequently, they can be compared
with constant time complexity.

For the comparison of objects by their shape there exist also meaningful
methods [9]. However, their efficiency in terms of computational complexity is
still a problem. As an example, the approach of [8] which achieves promising
retrieval results has a biquadratic time complexity, O(n*). This is different for
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numeric shape features [3, 4]. They characterise shapes by a single numeric value.
This entails two advantages: First, two shapes described by such a feature can be
compared with constant time complexity, O(1). Second, the shapes of an image
database can be ordered in accordance to a numeric shape feature. This allows
retrieval algorithms to be applied which employ binary search strategies with a
time complexity of O(logn), with n being the number of images in the database.

Applied exclusively, however, the retrieval performance for each of these fea-
tures is rather limited since each one describes only one simple property of an
object, e.g. the aspect ratio [3] of the minimal enclosing rectangle. But combining
such simple features improves classification results significantly, still with con-
stant time complexity for the comparison of two shapes. Characterising an object
twice by similar features, however, does most likely not improve its description.
By contrast, it is more promising to combine features which are built upon dif-
ferent foundations. We introduce three new numeric shape features based on a
qualitative approach, thereby complementing existing features. Afterwards, we
combine them with existing quantitative numeric shape features.

The remainder of this paper is structured as follows: In Sect. 2 we intro-
duce previous work that underlies our new approach which is then presented in
Sect. 3. We evaluate our method in Sect. 4 by comparing it to other approaches.
Eventually, a conclusion follows in Sect. 5.

2 Previous Work

The work presented in this paper focuses on the characterisation of shapes. For
this purpose, it is assumed that silhouettes have been segmented from raster
images before. Contours of silhouettes can then represented by polygons, as it
has been motivated from the cognitive point of view by [2]. Additionally, the
following reasons support a pure cognitive motivation: First of all, confining
oneself to contour points the uniform distribution of points of the silhouette’s
interior can be excluded. Since only the contour points are relevant concerning
any object’s outer shape, this restriction does not entail any loss of relevant in-
formation. Secondly, the application of polygonal approximation algorithms [11]
allows a massive data reduction with only little influence on the perception of
shape. We apply especially the method of [10], thereby choosing a scale-invariant
approximation error of one percent of a polygon’s perimeter.

2.1 Reference System

The polygon obtained in the previous step of abstraction forms a quantitative
description of the underlying shape. The concrete representation depends on
scale, translation, and rotation of the object under consideration. Furthermore,
it is imprecise due to noise in the underlying image data. The aim is therefore to
achieve an invariance against scale, translation, and rotation as well as a certain
robustness against noise.



In order to meet the above objectives we apply the orientation grid of [15]
which brings in a qualitative abstraction. It is induced by each of the polygon’s
line segments as depicted in Fig. 1 (after an orientation has been imposed on the
polygon) and it consists of three auxiliary lines. The first one runs through the
reference segment allowing the qualitative distinction whether a point is located
on its left or right hand side. The two other lines are oriented orthogonally to the
first one, whereby each of them passes either the reference segment’s start point
or its end point. Their arrangement enables the decision whether a point lies in
front of the reference segment, next to, or behind it. In general, the orientation
grid divides the two-dimensional plane into six sectors, as depicted on the left
hand side of Fig. 1. Instead of its quantitative coordinates it is then possible to
characterise a point by its position relative to the respective line segment. This is
the third sector in the example depicted in the centre of Fig. 1. This description
is invariant against scale, translation, and rotation since the orientation grid is
an intrinsic reference system of the polygon, i.e. it is induced on each of its
line segments. A certain robustness against noise is achieved by partitioning the
two-dimensional plane into sectors. Generally, changing a point’s quantitative
position does not change the sector it is located in; even larger movements of
points only result in neighbouring sectors.

Fig. 1. Left: The orientation grid divides the two-dimensional plane into six sectors.
Centre: The qualitative position of py is in sector 3, which is located front left w.r.t.
the reference line p;p;. Right: The line segment prp; passes the sectors 3, 4, and 5

2.2 Bipartite Arrangements

Apart from characterising single points it is also possible to apply the orientation
grid in order to relate two polygonal line segments to each other. This is achieved
by the qualitative concept of bipartite arrangements [5,6], in short B.A. The
extension from characterising single points to line segments is straightforward.
As each line segment is defined by a start and an end point, these points have to
be taken into consideration. Both of them can be located in any of the six sectors
of the orientation grid (Fig. 1 right). Hence, this theoretically leads to a number
of 62 = 36 conceivable arrangements between two line segments. By omitting
symmetries and intersections [5] it is possible to reduce this number to those 23
BAss relations that are depicted on the left hand side of Fig. 2. Their mnemonic
labels are given in the centre of the same figure. As this approach relates line



Fig. 2. Example configurations (left) and mnemonic labels (centre) for the 23 B.Aas
relations between two line segments in the two-dimensional plane. Right: The iconic
representation of the bipartite arrangement’s scopes

segments in the two-dimensional plane it can be categorised as an extension of
Allen’s 13 qualitative relations between one-dimensional intervals [1].

A bipartite arrangement relation describes the position of a line segment
w.r.t. a reference segment. A polygon’s whole course can then be characterised
by applying a sequence of B.4s3 relations, describing each of the n polygonal line
segments, one after another [6]:

Definition 1 (Course) Let z be a line segment of a simple, closed polygon. Its
course, in short C(x), contains the BAss relations of all segments y; w.r.t. x:

C(x) == (Tygs- - Id, ... 2y, ), @y, € BA23;i=0,...,n—1

Hence, we obtain a qualitative description of the considered polygon w.r.t. one
of its segments. In order to arrive at a complete description it is necessary to
apply not only one line segment as a reference, but all of them, one after another.
This results in the following definition:

Definition 2 (Polygonal Course) Let P be a simple, closed polygon. Its polyg-
onal course, in short C(P), is the conjunction of all courses of P:

n—1

C(P):= /\ Cl(x;)

=0

The result is a matrix that comprises all n? B.Ajys relations that exist between
the polygon’s n line segments.

2.3 Scopes of Bipartite Arrangements and Courses

Based on the work of [5, 6] a more general approach has been introduced by [12,
13]. Their idea is to represent B.Aag relations and even courses as sets of atomic
relations. The advantage of such a representation is that it allows to apply stan-
dard set operations, e.g. union and intersection. A BA is considered atomic if



it populates only one of the orientation grid’s sectors, which holds for B;, Dy,
Fy, F,., D,, as well as B, (Fig. 2 left). Furthermore, those relations connecting
adjacent sectors, namely BO;, FO;, F,,, FO,, BO,, and B,,, are also atomic.
Altogether, these twelve relations form BA1o C BAss.

Each BAss relation can then be represented by its scope, i. e. the set of atomic
relations it consists of. The right hand side of Fig. 2 visualises the B.As3 relations’
scopes. Each of the twelve circles stands for the atomic relation that is located
at its position in the orientation grid. An opaque circle thereby means that the
atomic relation is part of a scope, while a transparent one indicates its absence.
This results in the following definition:

Definition 3 (Scope of a BA) Let 2 andy be line segments of a simple, closed
polygon. The set of atomic BAyo relations that represents the relation x, € BAsgs
is called the relation’s scope, in short o(xy):

o(zy) i={xy,, ... 2y, }, Ty, € BAL2

Each scope is a description with constant space complexity as the total number
of atomic relations that may be contained in a scope is limited to |BAja| = 12.
While a single B.As3 relation is limited to characterising the relationship between
two line segments, this limitation does not hold for scopes. By contrast, it is also
possible to characterise the position of a whole course by a single scope relation.
This can be achieved by exploiting the scope’s set property. In particular, we
create the union of the scopes of all B.As3 relations participating in a course:

Definition 4 (Scope of a Course) Let z be a line segment of a simple, closed
polygon and C(x) its course. The set of atomic relations describing the position
of C(x) is called the scope of the course, in short o(C(z)):

n—1
o(C(x)) == | J o(ri),ri € BAss

i=0
Proceeding this way, however, leads to a certain loss of information since Gestalt
features are not further considered within the scope of a given course. Never-
theless, the resulting characterisation offers still the expressiveness for applying
concepts such as the scope histogram [13] which computes the frequencies of a
polygon’s scopes, leading to promising results as has been shown in [12].

3 Qualitative Numeric Shape Features

The scope histogram [13] forms a very compact representation as it characterises
the shape of an object with constant space complexity. It is a statistical shape
descriptor as it considers only the frequencies with which the courses’ scopes
occur. The notion of scope, however, is not limited to statistics. By contrast, it
is also possible to derive further compact shape features from a polygonal course
(Definition 2). In this section we particularly introduce three of them, namely
the numeric shape features extent, exrtremum, and curvature, which are defined
on the basis of the scope approach.



3.1 Extent

The notion of a course (Definition 1) can be applied in order to characterise a
polygon qualitatively w.r.t. its line segment x. Definition 4 introduces the so-
called scope of a course as a more compact representation. By applying a set
of atomic BA;s relations the scope o(C(z)) specifies which of the orientation
grid’s sectors are populated by the given course. In general, the complexity of a
shape increases with the number of orientation grid sectors that are passed by its
course. This observation leads to the definition of the extent, which is a simple
measure of a shape’s complexity. The number of populated sectors correlates with
the atomic relations within the respective scope. Thus, it is sufficient to count
the atomic relations a scope comprises (Fig. 3). The maximum range nyax of an
extent 7 is defined by the maximally possible number of atomic relations within
a scope, which is npax = |BA12| = 12. This results in the following definition:

Definition 5 (Extent) Let x be a line segment of a simple, closed polygon and
o(C(x)) the scope of its course. The number of the atomic BA5 relations of the
scope is called the extent of the scope, in short n(o(C(x))), and it holds that

1(o(C(x)) = [o(C(@))] € {1,2, -, Nmax}
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Fig. 3. An apple. The three highlighted reference segments demonstrate the computa-
tion of extent 1 and extremum ( from the respective line segments’ scopes

Definition 5 determines the extent of a single course. This extent characterises
the complexity of a polygon as perceived by the line segment on which the ori-
entation grid is currently induced. However, as mentioned before each polygon
is characterised by n courses, where n is the total number of line segments. We
obtain a single numeric value, that characterises the whole polygon, by comput-
ing the average extent for all courses. In order to arrive at a normalised value in
[0, 1], the polygonal extent is divided by Mmax:

Definition 6 (Polygonal Extent) Let P be a simple, closed polygon. Its polyg-
onal extent, in short n(P), is the average number of the atomic B.A15 relations
of the scopes of all courses C(x;) of P:




Figure 4 depicts example silhouettes from the database of [9] that illustrate
the range of possible extents 7. The spring at the top left position exhibits
the highest extent. This is due to the line segments that are located within
the spring’s ends. Their extent is maximal, i.e. N, = 12, since the course
of these segments runs completely around them. The extent of the depicted
objects decreases from the top left to the bottom right. Out of all objects the
triangle has the lowest extent: for each of its line segments the polygon is solely
located in the second sector of the orientation grid, i.e. n = 1. These examples
demonstrate that the extent of a shape can easily be comprehended. Generally
spoken, the extent is the higher the more complex the underlying shape is, in
terms of indentations and how complex they are shaped.
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Fig. 4. Example shapes ordered accordingly to their extent 7

3.2 Extremum

The second qualitative shape feature that can be derived from the scope is called
the extremum. It tells us for a given line segment whether it is an extremum of
its respective polygon. Thereby, we denote a line segment as extreme if it is part
of the polygon’s convex hull. This in turn is the case whenever no other part
of the polygon is located on the right hand side of the considered line segment.
Detecting such a configuration on the basis of the scope representation is fairly
straightforward: in this case the whole polygon is [, i.e. it is located left w.r.t.
the reference segment. One possibility to realise [ is the scope o(C}) of the BAss
relation C; (Fig. 2).



Proposition 1 (Extremum) Let x be a line segment of a simple, closed poly-
gon. x is said to be an extremum, in short {(C(x)), if

(C()) = {(1) it 9(o(Clx) UL =n(l)

else
Proof: A union between [ and a scope o(C(z)) of a course C(x), that leads
to an increase in the scope’s extent, means that further atomic relations have
been added by means of the union operation. As the scope [ already contains all
atomic relations on the reference segment’s left hand side, the additional atomic
relations must lie on its right hand side. O

From the three example line segments highlighted in Fig. 3 only the leftmost one
is extreme. It is the only one that comprises atomic relations solely on its left
side. The other scopes’ atomic relations populate both halves of their respective
orientation grids. In order to obtain a characterisation of the whole polygon,
we count the extreme segments and relate them to the number of line segments
contained in the polygon:

Definition 7 (Polygonal Extremum) Let P be a simple, closed polygon. Its
polygonal extremum, in short ((P), measures, how many segments of P are ex-
tremes:

Figure 5 shows example silhouettes in conjunction with their respective ex-
tremum values. Since they are completely convex the first three objects (a square,
a triangle, and a semi circle) have the highest extremum values. The number and
size of concavities increase from the top left to the bottom right. None of the line
segments of the last three devices is convex. Consequently, the extremum values
of these shapes are zero. Therewith, the ordering established by the extremum
corresponds to the visual perception of the considered shapes’ convexity.

3.3 Curvature

The third feature we shall introduce here is referred to as the curvature. It
describes how often the course C(x) changes its position as perceived from its
reference segment x. More specifically, it is examined how often the relations
within the course change from one atomic B.A;s relation to another one. For this
purpose, it is not sufficient to analyse the scope o(C(x)) of the course C(z) as a
whole. Tt is rather necessary to analyse the scope of every single relation in C(z)
in order to relate it to its successor:

Definition 8 (Curvature) Let x be a line segment of a simple, closed polygon
and C(z) its course. The curvature of C(x), in short £(C(x)), arises from the
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Fig. 5. Example shapes ordered accordingly to their extremum ¢

sequence of its relations r; as follows:

0 if 7 =1TIdA (str(r;) Aint(ri—1,7i41))
no1 |1 if r;=1IdA (str(r;) Vint(ri—1,7i+1))
£(C(x)) = 2 if r;,=1d
=0 I no(r)) =1 if int(r;,rie1)
n(o(r;)) else

The first three cases in Definition 8 occur when the currently considered segment
is the reference segment itself. Before discussing these special cases, we shall start
with an analysis of the more general cases, namely the fourth and the fifth one.
The right hand side of Fig. 2 depicts the distinguishable scopes for single line
segments. Some of these scopes contain more than one atomic relation, which
means that a change of position w.r.t. the reference segment already occurs
within the respective line segment. The total number of changes in position
is thereby defined by the extent of the scope of one line segment’s relation:
n(o(r;)) — 1. Another change in position may occur between two subsequent
line segments r; and r;41. However, this is only the case, if their scopes do not
intersect, i.e. they have no atomic relation in common. In order to determine
such an intersection, we apply an auxiliary function. It creates the intersection
of the scopes under consideration. The intersection is not empty if the result’s
extent is greater than zero:
int(ry, ) = {true it n(o(ri)No(r:)) >0 (1)
false else

We shall now address the special case in which the considered line segment
is the course’s reference segment itself. In this case it does not suffice to examine



the intersection in the scopes of the predecessor and the successor. It is addi-
tionally necessary to find out whether or not the course has a kink around this
segment. Therefore, the reference segment’s predecessor and successor have to
be compared. If the scope ¢ of one relation is the inverse o~ of the other one,
the course has no kink. This can be determined using the following auxiliary
function:

str(r) = true iff o(ri_1) = o (riv1) @)
) false  else

Figure 6 gives an example on the application of the two auxiliary functions
with which we are now able to determine the curvature for a single course. How-
ever, in order to compute the curvature for a whole polygon, we have to extend
our definition again. Therefore, the average curvature for all of the polygon’s n
courses is determined. The range of the curvature for a single course is thereby
[1, 00]. In order to arrive at a value in |0, 1] like for the other features, we compute
each curvature’s multiplicative inverse:

Definition 9 (Polygonal Curvature) Let P be a simple, closed polygon. Its
polygonal curvature, in short £(P), is defined as the average of the multiplicative
inverses of the curvatures of all courses C(x;) of P:

The curvature values of example silhouettes are given in Fig. 7. The object
that is most curved is the spring on the left hand side. The curvature decreases
from the top left to the bottom right. The triangle exhibits the lowest curvature.
That is, as in the case of the extremum and extent, also the curvature corresponds
with the visual perception of the silhouettes: the more curved an object is the
higher its qualitative curvature value is.

3.4 Comparison

Figures 4, 5, and 7 illustrate, that convex shapes (high extremum values) coincide
with low values for extent and curvature. Thus, there seems to be a correlation
of extremum with both extent and curvature. The correlation observed between
extremum and extent can be explained by the fact that convex shapes are only
located left w.r.t. their polygon which also restricts the range of their extent.
Furthermore, convex shapes are bent only into one direction. Since they comprise
no reversals also the range for their curvature is limited. These correlations
indicate why a combination of these three features will most likely not be as
effective as a combination of completely independent features.

However, our new features are by no means completely redundant. On the
contrary, there exist also situations in which our new features supplement each
other. One counter-example against the correlation is formed by the pencil and
the triangle on the left hand side of Fig. 8. While both of them are completely
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Fig. 6. A bat. All line segments’ scopes w.r.t. the highlighted reference segment. The
result of the auxiliary functions is denoted for each pair of consecutive line segments.
The curvature & of this example course is 21

convex (i.e. have an extremum of 1.0) they can still be distinguished by their
extent and curvature. The right hand side of Fig. 8 depicts two silhouettes which
exhibit the same curvature, but nevertheless differ in their extent and extremum
values. This is due to the fact that the right polygon comprises some convex
line segments (those lying on the convex hull, i.e. being extreme according to
Definition 1) while the left one has none of them (relating to the extremum
values). Furthermore, the right hand side polygon is much more folded than the
left hand polygon (relating to its higher extent).

4 Retrieval Performance

In order to assess the retrieval performance of our approach we shall now conduct
an evaluation. As introduced above our method focuses on the shape of objects.
Hence, we apply particularly the popular core experiment CE-Shape-1 [9] for
the MPEG-7 standard. The purpose of this experiment is to compare different
shape descriptors. It takes only retrieval results into account, thereby completely
abstracting from the underlying algorithms. Thus, it allows our shape features
to be measured in comparison with others that have already been examined with
this standardised reference test.
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Fig. 8. Left: Two convex shapes with same extremum ( that can nevertheless be dis-
tinguished by their extent n and curvature . Right: Two shapes with same curvature
values &, but different extent n and extremum ¢

4.1 Experiment

We especially focus on Part B of the reference test which addresses similarity-
based shape retrieval. The experiment comes along with a database of 1400
silhouette images. These images are grouped together into 70 classes, whereby
each class comprises 20 instances. Figures 4, 5, and 7 depict example instances
of all 70 classes. During the test each image serves as a query, one after another.
All others are ordered concerning their similarity according to the approach
under consideration. The test’s result is determined accordingly to the following
definition: For each query, the correct matches among the first 40 results are
counted. This number is then related to the maximally possible number of correct
results. This is 20 for each single query (since each class comprises 20 instances)
and 28000 for all 1400 queries. Thus, a result of 100% means that all expected
results are found. Nevertheless, such an outcome is most unlikely if only shape
knowledge is applied [9]. This is due to the fact that the 70 classes are grouped
by semantic aspects, which means that some of them exhibit a broad bandwidth
of different shapes. Conversely, using a hypergeometric distribution, it is easy to
show that a random ordering of the search results achieves about 2.86% in the
MPEG test. This is a lower bound showing how much better an approach is in
comparison with mere chance.



4.2 Existing Approaches

Our new shape features are confined to a single numeric value. This allows a
comparison with constant computational complexity. Hence, it is a good choice
to compare them to approaches exhibiting the same complexity. We consider
three quantitative numeric shape features. These are the compactness [3], which
is the ratio 4;;4 of a polygon’s area and perimeter, and the radius ratio [4] %
of the minimum enclosing circle and the maximal contained circle. Furthermgflg,
we apply the aspect ratio [3] VI{,: of the minimal enclosing rectangle. These three
features have in common that they are based on fundamental geometric proper-
ties and that they represent a shape by just one single number.

Apart from the above numeric features, we compare our method also to two
other approaches which also pertain to the same class of complexity. On the
one hand the seven invariant Hu moments [7], which can directly be applied to
polygons [14], on the other hand the scope histogram of [12], which is based
on the scope of polygons like our method. In contrast to our approach which
determines visual shape properties, the scope histogram simply computes how
often the 86 distinguishable scopes occur in a polygon.

4.3 Retrieval Results

The classification results of our new numeric shape features compared to the pre-
vious ones can be found in Table 1. The results show that all numeric features
separately achieve results between about 16% and 25%. Thereby, our new quali-
tative features slightly outperform the quantitative ones. All considered numeric
features clearly exceed the 3% of a random ordering five to eight times. This
is notable since each feature consists of only one single numeric value. The Hu
moments and the scope histogram achieve better results of about 34% and 46%
respectively. This, however, is not surprising as they comprise a more complex
range of distinctions, namely seven and 86 respectively.

Table 1. Retrieval results of the numeric shape features extent (ET), extremum (EM),
curvature (CU), compactness (CO), radius ratio (RR), and aspect ratio (AR) examined
with CE-Shape-1 Part B. Furthermore, also the Hu moments (HU) as well the scope
histogram (SH) are evaluated

ET EM CU CO RR AR HU SH
24.97 18.19 23.30 21.86 16.82 24.12 34.13 45.52

Owing to their low computational complexity, it is possible and reasonable
to combine multiple numeric features. This, however, only makes sense if the
results are improved by such combinations. The classification results of these
combinations are summarised in Table 2. Our new qualitative numeric features



achieve a retrieval result of about 34%. This is already remarkable as they slightly
outperform the seven Hu moments. Nevertheless, their result lies below 52%
achieved by the three quantitative numeric features. This can be explained by
the fact that all qualitative features are based on the scope (see Sect. 3.4),
while the quantitative ones base on different geometric properties. Together, all
six numeric features achieve a retrieval result of about 62%. This is especially
remarkable as we apply only six numeric values for the characterisation of the
objects’ shapes, i. e. we only need constant time for the comparison of two shapes.
Especially, the result of the quantitative numeric features combined with the
Hu moments lies about eight percentage points below their combination with
our new features. The quantitative numeric features and the scope histogram
slightly outperform the combination of the six numeric features. However, the
scope histogram consists of 86 numeric values while we apply only six of them.

Table 2. Combining multiple numeric features improves the retrieval results: the qual-
itative features (QL), the quantitative features (QN), as well as the combination of
all numeric features (AN). For comparison, the quantitative features have also been
combined with the Hu moments (NH) and the scope histogram (NS)

QL QN AN NH NS

34.33 51.58 61.51 53.99 63.75

From the low computational complexity of O(1) results a fast execution.
On a computer with Windows XP and an Intel Centrino Duo processor with
2.16 GHz it takes only about five seconds in order to conduct the whole MPEG
test (nearly two million comparisons) for the six numeric shape features. Even-
tually, it is worth mentioning that a classification result of 62% is only about 15
percentage points less than the approach of [8] who achieve 76.45%. However,
their computational complexity is biquadratic while ours is still constant.

5 Conclusion

In this paper we introduce extent, extremum, and curvature, three new numeric
shape features. While other numeric shape features directly base on geometric
properties, we apply a polygonal approximation as well as a qualitative abstrac-
tion before. The orientation grid as an underlying intrinsic reference system
brings in an invariance against scale, translation, and rotation. Furthermore, the
polygonal approximation and the coarse perspective of the qualitative represen-
tation realise a certain robustness against noise in the underlying image data.
The new features are easily comprehensible as they are defined on the qualitative
relational system of the scope approach.

The evaluation results show that our new numeric features can keep up with
comparable methods. The retrieval performance can be improved by combining



multiple numeric features. Together with the three quantitative numeric fea-
tures discussed in this paper a retrieval result of about 62% in the MPEG test
is achieved. Hence, the new features in fact supplement the other established
features. Other features pertaining to the same complexity class can thus be
outperformed. The retrieval result is remarkable as only six numeric values are
applied for the characterisation of each shape. The computational complexity
for the comparison of two of these shapes is therefore constant. The achieved
result is only about 15 percentage points less than the 76.45% of [8]. However,
their computational complexity is biquadratic while ours is constant.
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